On the Poisson Equation and Diffusion Approximation
نویسنده
چکیده
A Poisson equation in d for the elliptic operator corresponding to an ergodic diffusion process is considered. Existence and uniqueness of its solution in Sobolev classes of functions is established along with the bounds for its growth. This result is used to study a diffusion approximation for two-scaled diffusion processes using the method of corrector; the solution of a Poisson equation serves as a corrector.
منابع مشابه
Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملOn the Diffusion limit of a semiconductor Boltzmann-Poisson system without micro-reversible process
This paper deals with the diffusion approximation of a semiconductor BoltzmannPoisson system. The statistics of collisions we are considering here, is the Fermi-Dirac operator with the Pauli exclusion term and without the detailed balance principle. Our study generalizes, the result of Goudon and Mellet [14], to the multi-dimensional case. keywords: Semiconductor, Boltzmann-Poisson, diffusion a...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملOn the bounds in Poisson approximation for independent geometric distributed random variables
The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method. Some results related to random sums of independent geometric distributed random variables are also investigated.
متن کاملDiffusion and Homogenization approximation for semiconductor Boltzmann-Poisson system
We are concerned with the study of the diffusion and homogenization approximation of the Boltzmann-Poisson system in presence of a spatially oscillating electrostatic potential. By analyzing the relative entropy, we prove uniform energy estimate for well prepared boundary data. An averaging lemma and two scale convergence techniques are used to prove rigorously the convergence of the scaled Bol...
متن کامل